
 

MATH 5061 Lecture 9 Mar 17
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Remark Totally geodesic submanifolds rarely exists in general M75

we want to define a weaker notion
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Geodesics Jacobi Fields

Q Given M g how does curvatures affect geometry

Recall The effect of Gauss curvature on geodesics in surfaces

k o E k O GRT Keo IH

P i

A If l p i rk f i r

geodesic geodesic

converges diverges

Q what about in higher dime

A curvatures affect the stability of geodesics

or more general of minimalsubmanifolds

nos 1st 2nd variation for lengthenergy functional on curves



1st 2nd variation Formula for length energy
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We start with the 1st variation

1st variation formula
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If the end points are fixed in the variation
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