Notice: PS44 due date postponed to next Wed. 1
\nLast time: Submanifold
$$
M^k \\\leq (\overline{M}^n, \overline{3})
$$
. $\overline{3}|_M =:3$
\n \Rightarrow study (M^k, g) from two perpendicularsic OR extrinsic
\nRoughly speaking: $T_p\overline{M} = T_pM \oplus (T_pM)^k$
\n $\begin{array}{c} \text{with respecting} \\ \text{with } g' \\ \text{with } g'' \end{array}$
\n $\begin{array}{c} \overline{M} = \overline{M}^T + \overline{M}^N \\ \overline{M} = \sum_{\substack{m=1 \\ m \neq 1}}^{\overline{m}} \sum_{\substack{m=1 \\ m \neq 1}}^{\$

 Def^2 : $M^k \in (\bar{M}^n, \bar{g})$ is totally geodesic if $A \equiv o$ at every $p \in M$ Eg.) $(R^n, 3\varepsilon_{\text{net}})$ $(S^n, 3\varepsilon_{\text{total}})$ totally geodesic
 $\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}$ $\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$ totally geodesic I hypersurface 18 R 19 Sealetic Company of S hypersurface $Prop: M^h \in (\bar{M}^n, \bar{J})$ totally $\langle z \rangle$ every geodesics in M
geodesics in \bar{M} geodesics in M Pf : For any smooth curve $\gamma : I \to M$, Note: Geodesics in M lying inside M $\overline{\nabla}_{\chi} \mathbf{v}' = (\overline{\nabla}_{\mathbf{v}} \mathbf{v}')^{\mathsf{T}} + (\overline{\nabla}_{\mathbf{v}} \mathbf{v}')^{\mathsf{N}}$ are always geodesic in ^M $= \nabla_{\gamma} \gamma' + \underline{\beta(\gamma, \gamma')}$ E (cuator
Mandesa geodesic

This gives a geometric interpretation of "Sectional curvature" in terms of "Gauss curvature" for surfaces.

 $Recall:$ In geodesic normal coord centered at $p \in (\widetilde{M}^n \cdot \widetilde{S})$.

Remark: Totally geodesic submanifolds rarely exists in general (M".3). We want to define a "weaker" notion. $Def²$: $M^k \in (\bar{M}^n, \bar{3})$ on the mean curvature vector at $p \in M$ \vec{H} (p) : = $\sum_{i=1}^{k} A_{p}(e_{i}, e_{i})$ where $\{e_{i,..}, e_{k}\}$ O.N.B. for $T_{p}M$ And we say M is minimal if $H \equiv \overline{O}$ at every p $e \in M$ Remarks: 1) totally geodesic and minimal E.g.) $\mathbb{S}^{n-1} \in \mathbb{R}^n$ 2) In codim. 1 case, we write $\overbrace{\hspace{15em}}^{\overbrace{\hspace{15em}}^{\hspace{15em}}\,\overbrace{\hspace{15em}}^{\hspace{15em}}\,}^{\hspace{15em}\overbrace{\hspace{15em}}^{\hspace{15em}\overbrace{\hspace{15em}}}}_{\hspace{15em}\overline{\hspace{15em}}\hspace{15em}}^{\hspace{15em}\overbrace{\hspace{15em}}}\,\overbrace{\hspace{15em}}^{\hspace{15em}\overbrace{\hspace{15em}}}\,\overbrace{\hspace{15em}}^{\hspace{15em}\overbrace{\hspace{15em}}}\,\overbrace{\hspace{15em}}^{\hspace{$ $\overline{H} = H\nu$ 9 Tanit nounal scalar mean amature (Sign depends on choice of \vec{v})

3) When $k = dim M = 1$, then "minimal" \iff "geodesic" In fact, minimal k-submanifolds are critical points to the k din't area functional just like geodesics are critical points to the length functional

E.g.) Minimal surfaces in IR3

totally geodesic

plane catenoid helicoid

nos 1st & 2nd variation for lengtulenergy functional on curves!

1st & 2nd Variation Formula (for length / energy)

 $\frac{\text{Def}^2}{\text{Set}}$: Given a (piecewise) smooth curve $\mathcal{V}:$ [a.b] \longrightarrow (M.g) define Length $L(Y) = \int_{a}^{b} \sqrt{g(y_{(t)}'x_{(t)})} dt - \left(\frac{\text{index } a}{\text{reparameterization}}\right)$ $\mathcal{L}(3) := \frac{1}{2} \int_{a}^{b} \vartheta(\gamma(t), \gamma(t)) dt - \left(\frac{\text{over } \text{over } \text{matrix}}{\text{over } \text{matrix}} \right)$

Remark: By Hölder inequality $L(Y) \leq 12 \text{ J}$ b-a $E(Y)$ $\overline{\mathbf{z}}$

and "=" holds \iff $\|\gamma(t)\| := \sqrt{g(\gamma(t), \gamma(t))}$ = const

 \Rightarrow L & E are the same (up to a multiplicative constant)

for curves parametrized proportional to arc length.

Setup: Consider a 1-parameter family of smooth curves in M.g) t \overline{z} $(t,s) := \gamma_s(t) : [a,b] \times (-\epsilon, \epsilon) \longrightarrow M$ smooth

$$
\frac{\gamma_s}{\gamma_s} \qquad \text{Look at the function of } s
$$
\n
$$
L(s) := L(\gamma_s)
$$
\n
$$
E(s) := E(\gamma_s)
$$

 $God:$ Compute $L'(o)$. $L'(o)$ and $E'(o)$. $E'(o)$

Notation : write the variation vector field as

$$
V(t) := \frac{\partial V}{\partial S}(t, 0) \qquad \text{a vector field}
$$

We start with the 1st variation.

Ist vaniation formula: $E'(s) = -\int_{a}^{b} \langle \frac{\partial S}{\partial s}, \nabla_{\frac{\partial}{\partial s}} \frac{\partial S}{\partial t} \rangle dt + \langle \frac{\partial S}{\partial s}, \frac{\partial S}{\partial t} \rangle \Big|_{t=s}^{t=b}$ and $\lfloor \frac{1}{15} \rfloor = \int_{a}^{b} \frac{1}{\lVert \frac{3\zeta}{2} \rVert} \left(\frac{3}{25} < \frac{3\zeta}{28}, \frac{3\zeta}{28} > - \left(\frac{3\zeta}{28}, \sqrt{3}\frac{3\zeta}{28} \right) \right) dt$ Prest: $E(s) = E(Y_s) = \frac{1}{2}\int_{s}^{b} \langle \frac{\partial Y}{\partial t}, \frac{\partial Y}{\partial t} \rangle dt$ \Rightarrow \in '(s) = $\frac{d}{ds}$ $\left(\frac{1}{2}\int_{a}^{b} < \frac{2b'}{at}$, $\frac{2b'}{at}$ > dt $\right)$ $=$ $\frac{1}{2}$ $\int_{b}^{b} \frac{3}{2} < \frac{3t}{21}$, $\frac{3t}{21}$ > dt comparine $r = \int_{c}^{b} < \nabla_{\frac{a}{2a}} \frac{d\vec{r}}{dt}$, $\frac{\partial \vec{r}}{\partial t} > dt$ torstan-free
 $\int_{a}^{b} < \nabla_{\frac{3}{2t}} \frac{38}{25}$, $\frac{37}{25}$ ott Metric \rightarrow $\int_{a}^{b} \left(\frac{3}{2t} \left\langle \frac{3}{2s} \cdot \frac{3}{2s} \cdot \frac{3}{2t} \right\rangle - \left\langle \frac{3}{2s} \cdot \frac{3}{2s} \cdot \frac{3}{2t} \right\rangle dx$ $= -\int_{a}^{b} \langle \frac{\partial Y}{\partial S}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial t} \rangle dt + \langle \frac{\partial Y}{\partial S}, \frac{\partial Y}{\partial t} \rangle \Big|_{t=a}^{t=b}$ Similarly, $L(s) = \int_{s}^{b} \sqrt{\left(s\frac{2^{y}}{2^{x}} - \frac{2^{y}}{2^{y}}\right)} dx$ \Rightarrow $L'(s) = \int_{a}^{b} \frac{1}{\left\| \frac{2s}{s+1} \right\|} < \nabla_{\frac{3}{2s}} \frac{2s}{s+1}$, $\frac{3s}{s+2} > dt$ $= \int_{a}^{b} \frac{1}{\left\| \frac{3t}{24} \right\|} \left(\frac{3}{2t} < \frac{3t}{2s} \cdot \frac{3t}{2t} > - < \frac{3t}{2s} \cdot \nabla_{\frac{3t}{24}} \frac{3t}{2t} > \right) dt$ If the end points are fixed in the vaniation: $\gamma_{s}^{(a)} = \gamma_{0}^{(a)}$ of $\gamma_{s}^{(b)} = \gamma_{0}^{(b)}$ Y sec-s.e) ie i then $V(a) = 0 = V(b)$ and $E_{(0)} = -\int_{c}^{b} \langle V(t), \nabla_{\frac{\partial}{\partial t}} \frac{\partial V}{\partial t} \rangle dt$ $L'(0) = -\frac{1}{\|\frac{\partial V}{\partial t}\|} \int_{A}^{b} \langle V(t), \nabla_{\frac{\partial}{\partial t}} \frac{\partial V}{\partial t} \rangle dt$ provided $\|\frac{\partial Y}{\partial t}\|$ = const. Cor: crit. pts of $E \iff \nabla_{\frac{2}{2t}} \frac{27}{3t} = 0$, ie. γ_0 is gendessie Crit. pts of $L \leq 5$ $\sqrt{\frac{27}{3t}} \leq 0$. ie. γ_{0} is gendessie provided $\|\frac{\partial Y}{\partial t}\|$ = const. Next, we assume do is a scodesic, ie $\nabla_{\frac{\alpha}{2t}}\frac{\partial f}{\partial t}=0$ and compute the 2nd variation. with end pts fixed. 2nd vanistion formula: $E''(0) = \int_{a}^{b} \left(\nabla_{\frac{a}{2}} V, \nabla_{\frac{a}{2}} V \right) - \left(R(\frac{\partial V}{\partial t}, V) \frac{\partial V}{\partial t}, V \right) dt$ $L''(0) = \frac{1}{\|\tilde{z}^k\|} \int_a^b \left\langle \nabla_{\frac{1}{2}v} v'' \nabla_{\frac{2}{2}v} v'' \right\rangle - \langle R(\frac{2V}{\delta t}, V) \frac{2V}{\delta t}, V'' \rangle dt$